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Lock and Farkas I have investigated the flutter of a two-bay

panel of infinite width in the low supersonic _regime. They have

determined numerically that the change in the flutter boundary from

the one bay result is much smaller for clamped edges than for simply-

supported edges. As Lock points out this is hardly surprising since,

for the natural modes of vibration of clamped multibay plates, each

bay behaves as a single bay independently of any other. It is generally

appreciated that this is also true of the flutter boundary in a high

supersonic flow where the aerodynamic forces are given by "piston

theory". The major purpose of the presen_-t note is to demonstrate that_

the flutter boundaries for the multlbay and one bay panels with

clamped edges are identical in a low supersonic flow as well, The

small difference found in Ref. I is attributed to the numerical

approximation.

Before presenting an analytical proof of the above statement, a

physical discussion is given which will make the validity of the

statement plausible if not "obvlous ff. The result is dependent primarily

on the nature of supersonic flow in conjunction with the clamped edge

) , . boundary condition. Since the flow is supersonic, motion in the second

) /I I _I baywill pr°duce n° aer°dynamic pressure'On the first bay" Sincethei

_ I_ i _ first bay is also structurally decoupled from the second (clamped edges),

l ldli" .=\ _ _ the flutter boundary of the first bay mus_-be the same as if there were

li l_>_i no second bay. Now consider the second bay. Another possible motlon of)
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the system satisfying the condition of equilibrium and all boundary

conditions is that the first bay remain motionless and the second bay

behaves as a single bay. Invoking linearity, one may expect the most

general motion of the system to be a superposition of those described

above. Thus the flutter boundary for each bay may be expected to be

the same as that of a single bay panel of the same length. The question

does arise as to °whether there is any other motion which is not covered

by the above discussiQD_As will be shown by the following analysis,

there is none.

ANALYSIS

The problem geometry is shown in Fig.l. The equation of motion

may be written in the form

0

W is the panel deflection, L a linear differential operator and the

integral arises from the aerodynamic loading. Note in particular that

the deflection in the first bay, 0 < x < L1 , induces an aerodynamic

loading on the second bay, x > _. It is this fact which has led to

the previous belief that the flutter boundaries for single bay and multibay

panels were different even for clamped edges.

The deflection in the first bay will be denoted by W I and that in the

second by W2. Therefore for the first bay Eq.l becomes

0

and for the second

It will prove convenient to make transformations for the second bay as

follows \
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Thus Eq.3 becomes

- Oo

where in L, x is replaced by y. Now solve Eqo2 for W1 . We wiII onIy

need to do this formally. Let

4

where, for definiteness, the WIJ are the (four for a plate) independent

solutions of Eq.2 satisfying the "initial" conditions

L-,_ .

Now solve for W_ (again formally) from Eq.4. Let

where

and where

L_= _'o
LI÷q

0

ac_-,_._

,_ i_,.(,__,)_._ 4,,-cL = _

,,_',_ _ _ _'_

(6)

\
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The first surmnation of Eq.6 may be considered the "homogeneous solution"

and the second the "particular solution". The g and are essentially

the same functions.

It remains to form the eigenvalue or flutter equation by satisfying

the boundary conditions on WI and WQ. These are:

X,.T,(o')=-c> _ c..',---o
(a)

I

"_v_2.Co_ = C) _ G.z.- c:)

(b)

, (c)

L

d "I (d)

(f)

Setting the determinant of coefficients to zero we have the eigenvalue

equation as

_..,,,,,_,_ __; _,__.,_?_,_ __,_c_,_]
d× dx

d, t d_ I
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The first factor is the stability determinant for the first bay as a

one bay panel and the second factor is the same for the second bay.

Note the stability equation is independent of fJ. Physically the fJ

are the deflections in the second bay due to the aerodynamic loading

induced by the motion of the first bay. If one solves for the eigen-

function of the second bay it is found that the solution is doubly

degenerate and involves two (rather than the usual one) arbitrary

constants. The second bay solution is composed of a one bay solution

(times an arbitrary constant) plus another solution (times an "arbitrary'

constant which is determined by the first bay motion) that accounts for

the deflection of the second bay under the induced aerodynamic loading of

the first bay. Of course, the first bay eigenfunction is independent of

the motion in the second bay.

CONCLUSIONS

The major limitations and also generalizations of the ffindependeB_e

property' will be stated.

First consider the limitations:

(i) It is only true for clamped edges; i.e. there can be no structural

coupling between bays.

(ii) The flow must be supersonic; there can be no upstream influence.

(iii) It is only true for the flutter boundary (i.e. for linear theory);

in the post-flutter (non-linear) regime the induced aerodynamic

loading will change the nature of the limit cycle oscillation in the

second bay from that of a single bay.

The extent to which these limitations are important can only be assessed

by numerical results such as those given in Ref.l and 2.

Finally it is apparent that the independence property holds for

(i) any number of bays, not necessarily identical

(ii) any structural element whose behavior is governed by an equation of the

form of Eq.l. For example, a circular cylinder or a plate of finite

width falls in this category. In the former case this arises from

using a Fourier synthesis in the circumferential variable and in the

latter by using a Galer_in solution in the spanwise variable.



i

-6 -

REFERENCES

i.

o

Lock, M.H. and Farkas, E.F.: Flutter of Two-bay Flat Panels of

Infinite Span at Supersonic Mach Numbers. AIAA Journal 3, 1692-1697,

(September 1965).

Dowell, E.Hf: Flutter of Multibay Panels at High Supersonic Speeds.

AIAA Journal _, 1805-1814, (October 1964).

J

\



e"

\
\

\
\

1
J-

0
U

0

...0
0

\


